The quasisimilarity orbits of invariant subspaces

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Orbits of Creative Subspaces

It is shown that the creative r.e. subspaces fall into infinitely many distinct elementary classes. The techniques also extend to give some new results about orbits of creative subspaces and subfields in L*(Voo) and L*(Foo) respectively. Finally within each of these new elementary classes we construct infinitely many further orbits in the automorphism group of L(V"oo).

متن کامل

Invariant Subspaces of the Monodromy

We show that there are obstructions to the existence of certain types of invariant subspaces of the Milnor monodromy; this places restrictions on the cohomology of Milnor fibres of non-isolated hypersurface singularities.

متن کامل

Invariant Subspaces, Quasi-invariant Subspaces, and Hankel Operators

In this paper, using the theory of Hilbert modules we study invariant subspaces of the Bergman spaces on bounded symmetric domains and quasi-invariant sub-spaces of the Segal–Bargmann spaces. We completely characterize small Hankel operators with finite rank on these spaces.

متن کامل

Perturbation of invariant subspaces ∗

We consider two different theoretical approaches for the problem of the perturbation of invariant subspaces. The first approach belongs to the standard theory. In that approach the bounds for the norm of the perturbation of the projector are proportional to the norm of perturbation matrix, and inversely proportional to the distance between the corresponding eigenvalues and the rest of the spect...

متن کامل

Continuation of invariant subspaces

In this work we consider implementation and testing of an algorithm for continuation of invariant subspaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 1991

ISSN: 0022-1236

DOI: 10.1016/0022-1236(91)90033-2